

Tuesday, June 5, 2018

10 a.m. PDT • Noon CDT • 1 p.m. EDT 6 p.m. BST • 7 p.m. CEST

WEBINAR AND VIRTUAL WORKSHOP: **ADVANCEMENTS IN GNSS+INS TECHNOLOGY AND INTEGRATION**

WELCOME TO

Webinar and Virtual Workshop: Advancements in GNSS+INS Technology and Integration

Demoz Gebre-Egziabher Professor Aerospace Engineering and Mechanics University of Minnesota

Andrey Soloviev Principal QuNav

David Gaber Marketing & Business Development Epson

Ryan Dixon Chief Engineer, SPAN NovAtel

Co-Moderator: Lori Dearman, Executive Webinar Producer

Who's In the Audience?

A diverse audience of over 450 professionals registered from 52 countries, representing the following industries:

19 % GNSS equipment manufacturer

18% System Integrator

15% Product/Application Designer

15% Professional User

13% Government

20% Other

InsideGNSS

inside

ned systems

Welcome from Inside GNSS

Richard Fischer Publisher Inside GNSS Inside Unmanned Systems

Demoz Gebre-Egziabher Professor Aerospace Engineering and Mechanics University of Minnesota

WELCOME TO

Webinar and Virtual Workshop: Advancements in GNSS+INS Technology and Integration

Demoz Gebre-Egziabher Professor Aerospace Engineering and Mechanics University of Minnesota

Andrey Soloviev Principal QuNav

David Gaber Marketing & Business Development Epson

Ryan Dixon Chief Engineer, SPAN NovAtel

Co-Moderator: Lori Dearman, Executive Webinar Producer

Poll #1

What does having a better quality IMU improve in INS/GNSS integrated systems? (select all that apply) a) Accuracy b) Continuity c) Integrity d) Availability

GNSS/INS Integration: Major Trends and Implementation Example

Andrey Soloviev Principal QuNav

Key Trends

- From high-grade to lower SWAP-C IMUs

- Application for GNSS-degraded and denied environments

Main Challenge

Mitigation of inertial error drift

Solutions:

- Use of *advanced integration techniques*
- Integration with other sensors

Advanced Integration Techniques

Loose coupling (integration at solution level) has limited benefits

- Only sparse GNSS fixes can be obtained;
- This results in extended GNSS outages

Tight coupling and deep integration must be used:

- *Tight coupling* (integration at the measurement level):
 - Increases the availability of (partial) GNSS updates
- Deep integration (integration at the signal processing level):
 - Weak signal recovery
 - Multipath suppression

Integration with Other Sensors

- GNSS/INS performance can be still limited
- Integration with other sensors (and sources of navigation data) must be used: *Examples*: Video-cameras; Motion models (non-holonomic constraints)

Integration Example:

GNSS/INS for <u>consumer-grade</u> IMUs

Main Features of Consumer-Grade Inertial

Key challenges:

- Large sensor errors
- Partially defined (undefined) specs (e.g., axes misalignment)
- Nonlinearities (heading drift)

However:

- Bias (drift) stability and noise performance has improved significantly;
- This enables the use of *consumer-grade IMUs* for *improved robustness of GNSS* (coasting through outages and weak signal recovery)

Use of GNSS Carrier Measurements

- Large (but stable) biases are still present: e.g. gyro drift at a 5 deg/s level
- GNSS carrier phase (or Doppler frequency) can be utilized to estimate and remove bias components: low-noise measurements enable fast convergence

Integration with GNSS Carrier Phase

• Resolving integer ambiguities can be challenging:

SV clock

- Need for a base station;
- Limited number of SVs
- Therefore, *carrier phase changes* are used as *GNSS observables*:

inside

Inside

$$\Delta \varphi = \varphi(t_n) - \varphi(t_{n-1}) = \Delta \rho + \Delta \delta t_{revr} + \Delta \varepsilon + \Delta \eta$$

$$\downarrow$$
Directly related to INS error states

INS Error Model

24 states:

- Position errors (3 states)
- Delta position errors (3 states)
- Velocity errors (3 states)
- Attitude errors (3 states)
- Gyro and accelerometer biases (6 states)
- Axis misalignment (6 states)

INS Navigation Mechanization

Relatively simple mechanization can be used:

- No need to compensate for non-inertial effects that are below the level of sensor errors

NotAtz Inside GNSS inside unmanned systems

Performance of GNSS/INS integration can be still limited...

- Performance of GNSS-only solution is improved significantly
- However, some limitations remain: e.g., large position errors (tens of meters) can be present in urban canyons

Improving performance of GNSS/INS

- Other sources of navigation information have to be used for reliable navigation
- Vehicle motion model: non-homonymic constraints
- Integration with other sensors

Example performance in urban canyons (downtown San Francisco)

Carrier phase GNSS/INS (STMicro iNEMO)/motion model/monocular video camera

Reliable positioning is maintained for the entire duration of the test

Example performance in urban canyons (downtown San Francisco)

Carrier phase GNSS/INS (STMicro iNEMO)/motion model/monocular video camera

Reliable positioning is maintained for the entire duration of the test

Example performance in a parking garage

- GNSS/INS/motion model
- Consumer-grade IMU (STMicro iNEMO)
- GNSS outage duration exceeds 5 min

Use of consumer-grade IMU to enhance robustness of GNSS signal processing

- Consumer-grade IMU is used to extend coherent accumulation of GNSS signals
- This enables:
 - Weak signal recovery (thus enhancing the GNSS signal availability)
 - Multipath suppression

Deep GNSS/INS integration with long coherent integration

- Traditionally, deep integration has been developed for navigation grade and/or tactical-grade IMUs;
- Improved performance of consumer-grade MEMS IMUs allows for deep integration with low-cost inertial sensors

UAV demonstration example

Position performance under 40-dB attenuation introduced into live-sky GPS signals

EPSON IMU FEATURE SET

David Gaber Marketing & Business Development Epson

ANAD

ENGINEERED FOR INDUSTRY

NITED STATES

EPSON IMU PRODUCT LINE

-

NovAtel

Inside

EPSON ELECTRONICS AMERICA

Contains Confidential Information. Not for External Distribution.

inside unmanned systems

GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

Epson IMU History

- Vertical Integration
- Quartz Crystal
- QMEMS
- QMEMS Uses

SECTION I: OVERVIEW EPSON IMU HISTORY

Vertical Integration

Epson owns and controls all manufacturing and production for nearly all IMU components:

- Synthetic Crystal Bar Production
 - Hachinohe Plant, Japan
 - Miyazaki Plant, Japan
 - Washington Plant, USA
- Wafer Processing
 - Hachinohe Plant, Japan
- IC & MCU Fabrication
 - Sakata Plant, Japan
 - Fujimi Plant, Japan
 - Suwa Minami Plant, Japan
- Gyro Fabrication
 - Ina Plant, Japan
- Oscillator Fabrication
 - Miyazaki Plant, Japan
 - Shonan Plant, Japan
- Final Assembly
 - Fujimi Plant, Japan
- Testing and Calibration
 - Fujimi Plant, Japan
 - Sakata Plant, Japan

GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

Epson IMU History

- Vertical Integration
- Quartz Crystal
- QMEMS
- QMEMS Uses

SECTION I: OVERVIEW EPSON IMU HISTORY

Quartz Crystal

Epson produces and utilizes 100% synthetic quartz crystal for all inertial sensing products:

- Epson Synthetic Quartz Crystal
 - Synthesized from natural quartz crystal
 - Uniform size, shape and quality
 - Efficient wafer yielding = low production costs
- Natural Quartz Crystal
 - Found in nature but very expensive
 - Varies in size and shape
 - Contains impurities = susceptible to cracks

GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

Epson IMU History

- Vertical Integration
- Quartz Crystal
- QMEMS
- QMEMS Uses

SECTION I: OVERVIEW EPSON IMU HISTORY

QMEMS

Epson's proprietary quartz MEMS fabrication process:

- Stable Supply
 - · High quality supply of synthetic quartz is available throughout Japan & United States
- Physically and Chemically Stable Material
 - Low aging = excellent long-term stability
 - Excellent workability and low variation among samples
- Extremely Low Internal Loss of Vibration
 - Low power required for oscillation = low overall power consumption
- Performance over Temperature can be Dictated by Cutting Angle
 - Proprietary cutting angle process and technology assures consistent performance

Inside GNSS unmanned systems

OVERVIEW

GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

Epson IMU History

- Vertical Integration
- Quartz Crystal
- QMEMS
- QMEMS Uses

SECTION I: OVERVIEW EPSON IMU HISTORY

QMEMS

Epson's QMEMS elements are highly stable over temperature:

 — QMEMS gyroscopes offer ~100x better stability than SiMEMS.

NovAtel

GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

Epson IMU History — Vertical Integration

- Quartz Crystal

- QMEMS - QMEMS Uses

SECTION I: OVERVIEW EPSON IMU HISTORY

QMEMS Uses

Epson's proprietary quartz MEMS fabrication process is used for many product lines:

- Timing Products
- Real-Time Clocks
- Inertial Sensors

A QMEMS element for a gyroscopic sensor is shown balanced on the tip of a pencil lead.

One of Epson's QMEMS autoclaves located in Japan.

OVERVIEW GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

Physical Structure

Epson's proprietary "Double-T" quartz MEMS gyroscopic sensor:

- Operates like traditional Coriolis gyros
- Uses differential detection
- Drive and detection arms vibrate in the same plane

A QMEMS element shown in drive mode (left) and detection mode (right).

OVERVIEW GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS **NEW PRODUCTS**

Physical

Structure

Double-T

gyroscopic

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

inside unmanned systems

InsideGNSS

NovAtel

OVERVIEW GYRO TECHNOLOGY IMU EVOLUTION CURRENT PRODUCTS **NEW PRODUCTS**

Architecture

housing:

1.0k

30 SE(M) 2004/07/1

components and

Epson's QMEMS gyro

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

2mm

- FPC Substrate **Ceramic Package** - Thermally-protected

- Connecting IC to package

Seam-welded metal

Element Suspension

- Tape Automated

Bonding (TAB)

InsideGNSS

Gold Wire

Lid

NovAte

inside unmanned systems

IC Multi-function Epson ASIC

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

Architecture

Epson's QMEMS Double-T gyroscopes use a proprietary TAB mounting structure:

- Tape Automated Bonding.
- Provides significant shock & vibration isolation.

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

Architecture

Epson's QMEMS gyro electronics design advantages:

- Vibration and shock suppression due to differential amplification of two sensor arm signals.
- Amplification can be optimized for required gyro dynamic range.
- Individual control of anti-alias filter and $A \rightarrow D$ sampling rate.
- Intrinsic QMEMS sensor stability through temperature, including bias-drift and scale factor error.

inside unmanned systems

InsideGNSS

NovAte

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

Differentiation

Epson's proprietary "Double-T" quartz MEMS gyroscopic sensor offers several advantages:

- Drive and detection arms are discrete but oscillate in the same plane.
 - No vibration is induced by the drive arms.
 - Signal-to-noise ratio is very high.
- Significantly lower noise than traditional H-type vibration gyros.
- Excellent rejection of vibration and shock.
- High stability over temperature.

- Very low power consumpti	on
----------------------------	----

Gyroscope Element Structure	Epson Double-T	Tuning Fork	Silicon MEMS
Q Value	© Q=30000	⊖ Q=10000	 Q=3000
Element Support Method	© Point symmetry	∆ Cantilever support	O Center support
Detecting Structure	© separation	\bigtriangleup No separation	\bigtriangleup No separation

Ask the Experts – Part 1

Demoz Gebre-Egziabher Professor Aerospace Engineering and Mechanics University of Minnesota

Andrey Soloviev Principal QuNav

Epson

Ryan Dixon Chief Engineer, SPAN NovAtel

Moderator: Demoz Gebre-Egziabher

Poll #2

When considering the purchase of an INS solution, how important is the quality of the IMU in your decision?

- 1. Very important
- 2. Important
- 3. Somewhat important
- 4. Not important
- 5. Not sure

EPSON IMU FEATURE SET

David Gaber Marketing & Business Development Epson

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

InsideGNSS

NovAte

inside unmanned systems

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

inside unmanned systems

InsideGNSS

NovAtel

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

Temperature Effects

Epson's QMEMS gyros offer high stability over temperature:

Inside GNSS inside unmanned systems

OVERVIEW **GYRO TECHNOLOGY** IMU EVOLUTION CURRENT PRODUCTS NEW PRODUCTS

SECTION II: GYRO TECHNOLOGY PROPRIETARY ELEMENT

Noise Density

Epson's QMEMS gyros offer very low noise:

Proprietary Element

- Physical Structure
- Architecture
- Differentiation
- Vibration Effects
- Shock Effects
- Temperature Effects
- Noise Density

20 Years of R&D — History — Performance

SECTION III: IMU EVOLUTION 20 YEARS OF R&D

History

*The XV-9000 is a 1DoF gyroscopic sensor produced after Epson moved to 6DoF sensor types.

20 Years of R&D — History — Performance

Flagship Products — G3XX Series SECTION IV: CURRENT PRODUCTS IMU & ACCELEROMETER

G364

Narrow dynamic range:

- Ideal for slow-moving vehicles
- Epson's highest performance IMU

NovAtel

G220 G365 G370

Increasing Performance — G220 | G365 | G370 — G450

SECTION IV: NEW PRODUCTS

P/N	G220	G320	G354/364	G365	G370
Status	Sampling Now	MP	MP	Sampling Now	Sampling Now
Gyro	±150dps	±150dps	±450/200dps	±150/450dps	±150/450dps
Bias Error [deg/sec,σ]	0.1(z) ,0.5(x/y)	0.5	0.1	0.1	0.1
BIS[deg/hr]	<2(z) ,8(x/y)	3.5	3/2.2	< 1.8	< 0.8
ARW[deg/√hr]	<0.1(z) ,0.2(x/y)	0.1	0.2/0.09	0.09	0.06
Noise[deg/sec/√Hz]	0.004	0.002	0.002	0.0015	0.001
BW [Hz]	50	200	200	500	500
Accl	±6G	±5G	±5/3G	±6/10G	±6/10G
Bias Error [mG,σ]	(TBD)	15	5	3	2
BIS [µG]	100	100	70/50	10	7
VRW [m/s/√hr]	0.1	0.05	0.03/0.025	0.04	0.03
Noise[uG/√Hz]	200	100	60	70	50
BW [Hz]	50	200	200	500	500
Data output	16bit,< 1kSps	32bit,< 2kSps	32bit,< 2kSps	32bit,< 2kSps	32bit,< 2kSps
Attitude Output		(N/A) Tilt Angle (up to 200sps)		p to 200sps)	
IF	UART/SPI (20-pin connector)				
PKG	24x24x10mm				
Temp. Operation [°C] Calibration [°C]	-40to+85 -20to+70	-40to+85 ↑	-40to+85 ↑	-40to+85 ↑	-40to+85 ↑
Power	3.3V, 16mA	3.3V, 18mA	3.3V, 18mA	3.3V, 18mA	3.3V, 18mA

NovAtel

Inside GNSS

inside unmanned systems

Increasing Performance — G220 | G365 | G370 — G450

U			G450 (Draft)
		Units	
	Gyro (Range)	deg/sec	100 / 450
	SF Error	%(σ)	0.05
	Bias Error	deg/sec (σ)	0.1
	Bias Instability	deg/hr	0.5
	ARW	deg/√hr	0.03
	Accel (Range)	g	3/6
	SF Error	%(σ)	0.05
	Bias Error	mG(σ)	2
	Bias Instability	mG	0.01
	VRW	m/sec/√hr	0.007
	Output Data Rate	Hz(max)	1,000
	Resolution	bits	16 / 32
	Interface	-	SPI/UART
	External Trigger Accuracy	µsec	100
	Attitude Output Function	-	Quaternion / Euler

mm

Deg.C

V/mA

-40 to 85

3.3 / (TBD) (24 x 50 x 17)

Cal Temp Range

Power Supply

Size

Inside **GNSS**

NovAtel

inside unmanned systems

Performance Differentiation in a GNSS/INS Solution

Chief Engineer, SPAN NovAtel

- NovAtel's GNSS/INS product line
- SPAN = "Synchronized Position Attitude Navigation"
- Combining a range of IMU sensors with NovAtel GNSS receivers
- Deeply (Ultra-Tightly) coupled architecture

Sensor Integration History at NovAtel

Nov/Atel

InsideGNSS

Designed to apply a variety of constraints to any fixed wheel land vehicle for a variety of applications

Land Vehicle Technology

Vehicle velocity constraints

- Non-holonomic constraints
- Dead Reckoning
- If you don't have GNSS

Phase wind-up relative attitude

- Relative azimuth update method looking at the circular polarization of GPS signals
- Greatest improvements in low motion environments

Robust kinematic alignments

- Allow alignments as easily as possible. Do not force a specific alignment procedure
- Automatically detect forward or backwards start

Source: Wikipedia

InsideGNSS

inside

unmanned systems

Three test cases to examine:

- Urban Canyon
- Low Dynamics
- Extended GNSS Outage

Tests use GNSS and INS only. No aiding sensors used and only single antenna GNSS solution

Equipment Used – PwrPak7-E1

PERFORMANCE ¹			
Channel Configuration			
C, L2C, L2P, L5			
C/A, L2C, L2P,			
L3, L5			
B1, B2, B3			
E1, E5 AltBOC			
E5a, E5b, E6			
L5			
L1, L5			
1C, L2C, L5, L6			
o to 5 channels			
Position			
1.5 m			
1.2 m			
TM			
60 cm			
40 cm			
40 cm			
4 cm			
1 cm + 1 ppm			
<10 s			
>99.9%			

IMU PERFORMANCE¹¹

inside unmanned systems

NovAtel

Gyroscope Perfe	ormance
Input range	±150 deg/s
Rate bias stability	3.5 deg/hr
Angular random w	alk
	0.1 deg/√hr
Accelerometer F	Performance
Range	±5 g
Bias stability	0.1 mg
Velocity random w	/alk
	0.5 m/s/√hr
1 RS-232 up tr 2 RS-232/RS-422	o 460,800 bps 2 selectable
up te	o 460,800 bps
1 USB 2.0 (device)	HS
1 USB 2.0 (host)	HS
1 Ethernet	10/100 Mbps
1 CAN Bus	1 Mbps
3 Event inputs	
3 Event outputs	
1 Pulse Per Second	d output
1 Quadrature Whe input	el Sensor
PHYSICAL AND	ELECTRICAL

- Downtown Calgary, Canada
- Difficult GNSS conditions
- Benefits largely from SPAN tightly-coupled architecture; use of partial GNSS information
- SPAN Land Vehicle technology aids during the most difficult periods

InsideGNSS

NovAtel

inside unmanned systems

Urban Canyon Results: Horizontal Position

Inside

NovAtel

Urban Canyon Results: Azimuth

NovAtel

Inside **GNSS**

Test Case 2: Low Dynamics

- Vehicle moving straight on 2 Km rural road at 10-15 Km/h
- Ideal GNSS conditions
- Difficult INS conditions; limited observable motion
- Benefits from vehicle motion constraints and phase windup attitude updates

inside unmanned systems

InsideGNSS

NovAtel

Low Dynamics Results: Azimuth

-

NovAtel

Inside **GNSS**

Test Case 3: Extended Outage

- Parking Garage extended GNSS outage
- Relying on the propagated INS solution
- Performance driven by IMU and application of land vehicle constraints

Inside**GNSS**

NovAtel

Source: Google Earth

inside unmanned systems **Parking Garage Results: Horizontal Position**

Nov/Atel

Inside

Parking Garage Results: Horizontal Velocity

Inside **GNSS**

inside unmanned systems

NovAtel

OEM6 SPAN

OEM7 Default SPAN

OEM7 with SPAN Land Vehicle

Conclusions & Discussion

Remarkable performance is now achievable with the latest MEMS IMUs but be informed

inside

ed systems

InsideGNSS

NovAte

- IMU selection remains crucial
- INS algorithms differentiate performance
- System selection is very important
- Know what the desired environment(s) are
- Know the key performance metric(s)

Poll #3

In what harsh GNSS environments do you struggle to provide high accuracy positioning? (top three)

- A. Urban canyons and/or foliage
- B. Jammed
- C. Spoofed
- D. Indoors
- E. Tunnels/Underground/Pipeline

SPAN Land Vehicle Performance Analysis Paper: NovAtel's SPAN Land Vehicle Performance Analysis.

Follow NovAtel on Social Media for latest releases and updates:

- Facebook: <u>https://www.facebook.com/novatelinc/</u>
- 9

in

Twitter: @novatelinc

Linkedin: https://www.linkedin.com/company/347693/

Ask the Experts – Part 2

Demoz Gebre-Egziabher Professor Aerospace Engineering and Mechanics University of Minnesota

Andrey Soloviev Principal QuNav

David Gaber Marketing & Business Development _____ Epson

Ryan Dixon Chief Engineer, SPAN NovAtel

www.insideunmannedsystems.com www.insidegnss.com www.novatel.com